【中专数学新课程标准2013版】2011版数学新课程标准

2017-04-07

本文地址:http://www.jayblog.net/430000/422432.shtml
文章摘要:【中专数学新课程标准2013版】2011版数学新课程标准,李传韵有规则善良,在三年内弓影杯蛇国办。

对基础知识和基本技能的评价,应以各学段的具体目标和要求为标准,考查学生对基础知识和基本技能的理解和掌握程度,以及在学习基础知识与基本技能过程中的表现。在对学生学习基础知识和基本技能的结果进行评价时,应该准确地把握“了解、理解、掌握、应用”不同层次的要求。在对学生学习过程进行评价时,应依据“经历、体验、探索”不同层次的要求,采取灵活多样的方法,定性与定量相结合、以定性评价为主。

教师可以预设目标:对于第二学段的学生,能够完成第(1)(2)题就达到基本要求,对于能完成第(3)(4)题的学生,则给予进一步的肯定。

学生解决问题的策略可能与教师的预设有所不同,教师应给予恰当的评价。

3. 情感态度的评价

情感态度的评价应依据课程目标的要求,采用适当的方法进行。主要方式有课堂观察、活动记录、课后访谈等。

情感态度评价主要在平时教学过程中进行,注重考查和记录学生在不同阶段情感态度的状况和发生的变化。例如,可以设计下面的评价表,记录、整理和分析学生参与数学活动的情况。这样的评价表每个学期至少记录1次,教师可以根据实际需要自行设计或调整评价的具体内容。

表2  参与数学活动情况的评价表

学生姓名:     时间:        活动内容:             

教师可以根据实际情况设计类似的评价表,也可以根据需要设计学生情感态度的综合评价表。

4. 注重对学生数学学习过程的评价

学生在数学学习过程中,知识技能、数学思考、问题解决和情感态度等方面的表现不是孤立的,这些方面的发展综合体现在数学学习过程之中。在评价学生每一个方面表现的同时,要注重对学生学习过程的整体评价,分析学生在不同阶段的发展变化。评价时应注意记录、保留和分析学生在不同时期的学习表现和学业成就。

例如,可以设计下面的课堂观察表用于记录学生在课堂中的表现,积累起来,以便综合了解学生的学习表现以及变化情况。观察表中的项目可以根据实际需要自行调整,随时记录学生在课堂教学中的表现。教师可以有计划地每天记录几位同学的表现,保证每学期每位同学有3~5次的记录;也可以根据实际情况记录某些同学的特殊表现,如提出或回答问题具有独特性的同学、在某方面表现突出的同学、或在某方面需要改进的同学。

经过一段时间的积累,对于学生平时数学学习的表现,就会有一个较为清晰具体的了解。

表3  课堂观察表

上课时间:             科目:            内容:            

说明:记录时,可以用3表示优,2表示良,1表示一般,等等。

5. 体现评价主体的多元化和评价方式的多样化

评价主体的多元化是指教师、家长、同学及学生本人都可以作为评价者,可以综合运用教师评价、学生自我评价、学生相互评价、家长评价等方式,对学生的学习情况和教师的教学情况进行全面的考查。例如,每一个学习单元结束时,教师可以要求学生自我设计一个“学习小结”,用合适的形式(表、图、卡片、电子文本等)归纳学到的知识和方法,学习中的收获,遇到的问题,等等。

教师可以通过学习小结对学生的学习情况进行评价,也可以组织学生将自己的学习小结在班级展示交流,通过这种形式总结自己的进步,反思自己的不足以及需要改进的地方,汲取他人值得借鉴的经验。条件允许时,可以请家长参与评价。

评价方式多样化体现在多种评价方法的运用,包括书面测验、口头测验、开放式问题、活动报告、课堂观察、课后访谈、课内外作业、成长记录等等(参见例83)。在条件允许的地方,也可以采用网上交流的方式进行评价。每种评价方式都具有各自的特点,教师应结合学习内容及学生学习的特点,选择适当的评价方式。

例如,可以通过课堂观察了解学生学习的过程与学习态度,从作业中了解学生基础知识与基本技能掌握的情况,从探究活动中了解学生独立思考的习惯和合作交流的意识,从成长记录中了解学生的发展变化。

6. 恰当地呈现和利用评价结果

评价结果的呈现应采用定性与定量相结合的方式。第一学段的评价应当以描述性评价为主,第二学段采用描述性评价和等级评价相结合的方式,第三学段可以采用描述性评价和等级(或百分制)评价相结合的方式。

评价结果的呈现和利用应有利于增强学生学习数学的自信心,提高学生学习数学的兴趣,使学生养成良好的学习习惯,促进学生的发展。评价结果的呈现,应该更多地关注学生的进步,关注学生已经掌握了什么,获得了哪些提高,具备了什么能力,还有什么潜能,在哪些方面还存在不足,等等。

例如,下面是对某同学第二学段关于“统计与概率”学习的书面评语:

王小明同学,本学期我们学习了收集、整理和表达数据。你通过自己的努力,能收集、记录数据,知道如何求平均数,了解统计图的特点,制作的统计图很出色,在这方面表现突出。但你在使用语言解释统计结果方面还存在一定差距。继续努力,小明!评定等级:B。

这个以定性为主的评语,实际上也是教师与学生的一次情感交流。学生阅读这一评语,能够获得成功的体验,树立学好数学的自信心,也知道自己的不足和努力方向。

教师要注意分析全班学生评价结果随时间的变化,从而了解自己教学的成绩和问题,分析、反思教学过程中影响学生能力发展和素质提高的原因,寻求改善教学的对策。同时,以适当的方式,将学生一些积极的变化及时反馈给学生。

7. 合理设计与实施书面测验

书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施书面测验有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。

(1)对于学生基础知识和基本技能达成情况的评价,必须准确把握内容标准中的要求。例如,对于一元二次方程根与系数关系的考查,内容标准中的要求是“了解”,并不要求应用这个关系解决其他问题,设计测试题目时应符合这个要求。

内容标准中的选学内容,不得列入考查(考试)范围。

对基础知识和基本技能的考查,要注重考查学生对其中所蕴涵的数学本质的理解,考查学生能否在具体情境中合理应用。因此,在设计试题时,应淡化特殊的解题技巧,不出偏题怪题。

(2)在设计试题时,应该关注并且体现本标准的设计思路中提出的几个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,以及应用意识和创新意识。

(3)根据评价的目的合理地设计试题的类型,有效地发挥各种类型题目的功能。例如,为考查学生从具体情境中获取信息的能力,可以设计阅读分析的问题;为考查学生的探究能力,可以设计探索规律的问题;为考查学生解决问题的能力,可以设计具有实际背景的问题;为了考查学生的创造能力,可以设计开放性问题。

(4)在书面测验中,积极探索可以考察学生学习过程的试题,了解学生的学习过程。

三、教材编写建议

数学教材为学生的数学学习活动提供了学习主题、基本线索和知识结构,是实现数学课程目标、实施数学教学的重要资源。

数学教材的编写应以本标准为依据。教材所选择的学习素材应尽量与学生的生活现实、数学现实、其他学科现实相联系,应有利于加深学生对所要学习内容的数学理解。教材内容的呈现要体现数学知识的整体性,体现重要的数学知识和方法的产生、发展和应用过程;应引导学生进行自主探索与合作交流,并关注对学生人文精神的培养;教材的编写要有利于调动教师的主动性和积极性,有利于教师进行创造性教学。

内容标准是按照学段制订的,并未规定学习内容的呈现顺序。因此,教材可以在不违背数学知识逻辑关系的基础上,根据学生的数学学习认知规律、知识背景和活动经验,合理地安排学习内容,形成自己的编排体系,体现出自己的风格和特色。

1. 教材编写应体现科学性

科学性是对教材编写的基本要求。教材一方面要符合数学的学科特征,另一方面要符合学生的认知规律。

(1)全面体现本标准提出的理念和目标

教材的编写应以本标准为依据,在准确理解的基础上,全面体现和落实本标准提出的基本理念和各项目标。

(2)体现课程内容的数学实质

教材中学习素材的选择,图片、情境、实例与活动栏目等的设置,拓展内容的编写,以及其他课程资源的利用,都应当与所安排的数学内容有实质性联系,有利于提高学生对数学实质的理解,有利于提高学生对所学内容的兴趣。 

(3)准确把握内容标准要求

本标准对于义务教育阶段的数学教学内容有明确和具体的目标要求,教材的编写应遵循学生的认知规律,准确地把握“过程目标”和“结果目标”要求的程度。例如,关于距离的概念,在第二学段要求“知道”两点间的距离,在第三学段要求“理解”两点间距离的意义,“能”度量两点间的距离。在编写相关内容时,一方面要把握好“知道”与“理解”“能”之间程度的差异,另一方面也要注意内容之间的衔接。

(4)教材的编写要有一定的实验依据

教材的内容、实例的设计、习题的配置等,要经过课堂教学的实践检验,特别是新增的内容要经过较大范围的实验,根据实践的结果推敲可行性,并不断改进与完善。

2. 教材编写应体现整体性

教材编写应当体现整体性,注重突出核心内容,注重内容之间的相互联系,注重体现学生学习的整体性。

(1)整体体现课程内容的核心

教材的整体设计要体现内容领域的核心。本标准在设计思路中提出了几个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,以及应用意识和创新意识,它们是义务教育阶段数学课程内容的核心,也是教材的主线。因此,教材应当围绕这些核心内容进行整体设计和编排。

例如,在方程、不等式和函数的各部分内容编排中,应整体考虑模型思想的体现,突出建立模型、求解模型的过程。

再例如,推理能力包括合情推理和演绎推理,无论是“数与代数”“图形与几何”还是“统计与概率”的内容编排中,都要尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,发展学生的推理能力。

(2)整体考虑知识之间的关联

教材的整体设计要呈现不同数学知识之间的关联。一些数学知识之间存在逻辑顺序,教材编写应有利于学生感悟这种顺序。一些知识之间存在着实质性的联系,这种联系体现在相同的内容领域,也体现在不同的内容领域。例如,在“数与代数”的领域内,函数、方程、不等式之间均存在着实质性联系;此外,代数与几何、统计之间也存在着一定的实质性联系。

帮助学生理解类似的实质性联系,是数学教学的重要任务。为此,教材在内容的素材选取、问题设计和编排体系等方面应体现这些实质性联系,展示数学知识的整体性和数学方法的一般性。

(3)重要的数学概念与数学思想要体现螺旋上升的原则

数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如,分数、函数、概率、数形结合、逻辑推理、模型思想等。因此,教材在呈现相应的数学内容与思想方法时,应根据学生的年龄特征与知识积累,在遵循科学性的前提下,采用逐级递进、螺旋上升的原则。螺旋上升是指在深度、广度等方面都要有实质性的变化,即体现出明显的阶段性要求。

例如,函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的数学概念之一,本标准在三个学段中均安排了与函数关联的内容目标,希望学生能够逐渐加深对函数的理解。因此,教材对函数内容的编排应体现螺旋上升的原则,分阶段逐渐深化。依据内容标准的要求,教材可以将函数内容的学习分为三个主要阶段:

第一阶段,通过一些具体实例,让学生感受数量的变化过程、以及变化过程中变量之间的对应关系,探索其中的变化规律及基本性质,尝试根据变量的对应关系作出预测,获得函数的感性认识。

第二阶段,在感性认识的基础上,归纳概括出函数的定义,并研究具体的函数及其性质,了解研究函数的基本方法,借助函数的知识和方法解决问题等,使得学生能够在操作层面认识和理解函数。

第三阶段,了解函数与其他相关数学内容之间的联系(例如,与方程之间、不等式之间的联系),使得学生能够一般性地了解函数的概念。

(4)整体性体现还应注意以下几点

配置习题时应考虑其与相应内容之间的协调性。一方面,要保证配备必要的习题帮助学生巩固、理解所学知识内容;另一方面,又要避免配置的习题所涉及的知识超出相应的内容要求。

教材内容的呈现既要考虑不同年龄学生的特点,又要使整套教材的编写体例、风格协调一致。

数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用、以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美。例如,可以介绍《九章算术》、珠算、《几何原本》、机器证明、黄金分割、CT技术、布丰投针等。

3. 教材内容的呈现应体现过程性

教材编写不是单纯的知识介绍,学生学习也不是单纯地模仿、练习和记忆。因此,教材应选用合适的学习素材,介绍知识的背景;设计必要的数学活动,让学生通过观察、实验、猜测、推理、交流、反思等,感悟知识的形成和应用。恰当地让学生经历这样的过程,对于他们理解数学知识与方法、形成良好的数学思维习惯和应用意识,提高解决问题的能力有着重要的作用。

(1)体现数学知识的形成过程

在设计一些新知识的学习活动时,教材可以展现“知识背景—知识形成—揭示联系”的过程。这个过程要有利于激发学习兴趣,理解数学实质,发展思考能力,了解知识之间的关联。例如,分数、负数和无理数的引入都可以体现这样的过程。 

(2)反映数学知识的应用过程

教材应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现“问题情境─建立模型─求解验证”的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识。

每一册教材至少应当设计一个适用于“综合与实践”学习活动的题材,这样的题材可以以“长作业”的形式出现,将课堂内的数学活动延伸到课堂外,经历收集数据、查阅资料、独立思考、合作交流、实践检验、推理论证等多种形式的活动。提倡在教材中设计更为丰富的“综合与实践”活动题材,供教师选择。

4. 呈现内容的素材应贴近学生现实

素材的选用应当充分考虑学生的认知水平和活动经验。这些素材应当在反映数学本质的前提下尽可能地贴近学生的现实,以利于他们经历从现实情境中抽象出数学知识与方法的过程。学生的现实主要包含以下三个方面:

(1)生活现实

在义务教育阶段的数学课程中,许多内容都可以在学生的生活实际中找到背景。

第一学段,学生所感知的生活面较窄,从他们身边熟悉的、有趣的事物中选取学习素材,容易激发他们学习数学的兴趣,使他们感受到数学就在自己的身边,也易于他们理解相关的数学知识,体会到数学的作用。

第二学段、第三学段,学生的活动空间有了较大的扩展,他们感兴趣的问题已拓展到客观世界的许多方面,他们逐渐关注来源于自然、社会中更为广泛的现象和问题,对具有一定挑战性的内容表现出更大的兴趣。因此,教材所选择的素材应尽量来源于自然、社会中的现象和问题。如与现实生活有关的图片和图形(照片、简单的模型图、平面图、地图等),以使学生感受到数学的价值和趣味。

(2)数学现实

随着数学学习的深入,学生所积累的数学知识和方法就成为学生的“数学现实”,这些现实应当成为学生进一步学习数学的素材。选用这些素材,不仅有利于学生理解所学知识的内涵,还能够更好地揭示相关数学知识之间的内在关联,有利于学生从整体上理解数学,构建数学认知结构。例如,因式分解知识的引入可以借助整数的分解,平行四边形概念的引入可以借助三角形,等等。

(3)其他学科现实

数学的许多内容与其他学科知识有着密切的联系,随着学生学习的深入,其他学科的知识也就成为学生的“现实”,教材在选择数学学习素材时应当予以关注。

5. 教材内容设计要有一定的弹性

按照本标准要求,教材的编写要面向全体学生,也要考虑到学生发展的差异,在保证基本要求的前提下,体现一定的弹性,以满足学生的不同需求,使不同的人在数学上得到不同的发展,也便于教师发挥自己的教学创造性。例如:

(1)就同一问题情境提出不同层次的问题或开放性问题。

(2)提供一定的阅读材料,包括史料、背景材料、知识应用等,供学生选择阅读。

(3)习题的选择和编排突出层次性,设置巩固性问题、拓展性问题、探索性问题等;凡不要求全体学生掌握的习题,需要明确标出。

(4)在设计综合与实践活动时,所选择的课题要使所有的学生都能参与,不同的学生可以通过解决问题的活动,获得不同的体验。

(5)编入一些拓宽知识或者方法的选学内容,增加的内容应注重于介绍重要的数学概念、数学思想方法,而不应该片面追求内容的深度、问题的难度、解题的技巧。

(6)设计一些课题和阅读材料,引导学生借助算盘、函数计算器、计算机等工具,进行探索性学习活动。

6. 教材编写要体现可读性

教材应具备可读性,易于学生接受,激发学生学习兴趣,为学生提供思考的空间。教材可读与否,对不同学段的学生具有不同的标准。因此,教材的呈现应当在准确表达数学含义的前提下,符合学生年龄特征,从而有助于他们理解数学。 

对于第一学段的学生,可以采用图片、游戏、卡通、表格、文字等多种方式,直观形象、图文并茂、生动有趣地呈现素材,提高他们的学习兴趣。

对于第二学段的学生,由于他们具备了一定的文字理解和表达能力,所以教材的呈现应在运用学生感兴趣的图片、表格、文字等形式的同时,逐渐增加数学语言的比重。

对于第三学段的学生,随着数学学习、语言学习的深入,他们使用文字和数学符号的能力已经有了一定程度的发展。教材的呈现可以将实物照片、图形、图表、文字、数学符号等多种形式结合起来。

四、课程资源开发与利用建议

数学课程资源是指应用于教与学活动中的各种资源。主要包括文本资源——如教科书、教师用书,教与学的辅助用书、教学挂图等;信息技术资源——如网络、数学软件、多媒体光盘等;社会教育资源——如教育与学科专家,图书馆、少年宫、博物馆,报纸杂志、电视广播等;环境与工具——如日常生活环境中的数学信息,用于操作的学具或教具,数学实验室等;生成性资源——如教学活动中提出的问题、学生的作品、学生学习过程中出现的问题、课堂实录等。

数学教学过程中恰当的使用数学课程资源,将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。教材编写者、教学研究人员、教师和有关人员应依据本标准,有意识、有目的地开发和利用各种课程资源。

1. 文本资源

关于教科书、教师用书的开发,参见“教材编写建议”。

学生学习辅助用书主要是为了更好地激发学生学习数学的兴趣和动力,帮助学生理解所学内容,巩固相关技能,开拓数学视野,进而满足他们学习数学的个性化需求。这一类用书的开发不能仅仅着眼于解题活动和技能训练,单纯服务于应试。更重要的,还应当开发多品种、多形式的数学普及类读物,使得学生在义务教育阶段能够有足够的机会阅读数学、了解数学、欣赏数学。

教师教学辅助用书主要是为了加深教师对于教学内容的理解,加强教师对于学生学习过程的认识,提高教师采用有效教学方法的能力。为此,在编制教学辅助用书时,提倡以研讨数学教学过程中的问题为主线,赋予充分的教学实例,注重数学教育理论与教学实践的有机结合,使之成为提高教师专业水准的有效读物。

2. 信息技术资源

信息技术能向学生提供并展示多种类型的资料,包括文字、声音、图像等,并能灵活选择与呈现;可以创设、模拟多种与教学内容适应的情境;能为学生从事数学探究提供重要的工具;可以使得相距千里的个体展开面对面交流。信息技术是从根本上改变数学学习方式的重要途径之一,必须充分加以应用。

信息技术资源的开发与利用需要关注三个方面:

其一,将信息技术作为教师从事数学教学实践与研究的辅助性工具。为此,教师可以通过网络查阅资料、下载富有参考价值的实例、课件,并加以改进,使之适用于自身课堂教学;可以根据需要开发音像资料,构建生动活泼的教学情境;还可以设计与制作有关的计算机软件、教学课件,用于课堂教学活动研究等。

其二,将信息技术作为学生从事数学学习活动的辅助性工具。为此,可以引导学生积极有效地将计算器、计算机用于数学学习活动之中,如,在探究活动中借助计算器(机)处理复杂数据和图形,发现其中存在的数学规律;使用有效的数学软件绘制图形、呈现抽象对象的直观背景,加深对相关数学内容的理解;通过互联网搜寻解决问题所需要的信息资料,帮助自己形成解决问题的基本策略和方法等。

其三,将计算器等技术作为评价学生数学学习的辅助性工具。为此,应当积极开展基于计算器环境的评价方式与评价工具研究,如:哪些试题或评价任务适宜在计算器环境下使用,哪些不适宜,等等。

总之,一切有条件和能够创造条件的地区和学校,都应积极开发与利用计算机(器)、多媒体、互联网等信息技术资源,组织教学研究人员、专业技术人员和教师开发与利用适合自身课堂教学的信息技术资源,以充分发挥其优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具和评价工具;为学生提供探索复杂问题、多角度理解数学的机会、丰富学生的数学视野、提高学生的数学素养;为有需要的学生提供个体学习的机会,以便于教师为特殊需要的学生提供帮助;为教育条件欠发达地区的学生提供教学指导和智力资源,更有效地吸引和帮助学生进行数学学习。

值得注意的是,教学中应有效地使用信息技术资源,发挥其对学习数学的积极作用,减少其对学习数学的消极作用。例如,不应在数学教学过程中简单地将信息技术作为缩短思维过程、加大教学容量的工具;不提倡用计算机上的模拟实验来代替学生能够操作的实践活动;也不提倡利用计算机演示来代替学生的直观想象,弱化学生对数学规律的探索活动。

同时,学校之间要加强交流,共享资源,避免相关教学资源的低水平重复,也可以积极引进国外先进的教育软件,并根据本学校学生的特点加以改进。 

3. 社会教育资源

在数学教学活动中,应当积极开发利用社会教育资源。例如,邀请有关专家向学生介绍数学在自然界、科学技术、社会生活和其他学科发展中的应用,帮助学生体会数学的价值;邀请教学专家与教师共同开展教学研究,以促进教师的专业成长。

学校应充分利用图书馆、少年宫、博物馆、科技馆等,寻找合适的学习素材,如,学生感兴趣的自然现象、工程技术、历史事件、社会问题、数学史与数学家的故事和其他学科的相关内容,以开阔学生的视野,丰富教师的教学资源。

报纸杂志、电视广播和网络等媒体常常为我们提供许多贴近时代、贴近生活的有意义话题,教师要从中充分挖掘适合学生学习的素材,向学生介绍其中与数学有关的栏目,组织学生对某些内容进行交流,以增强学生学习数学的兴趣,提高学生运用数学解决问题的能力。

4. 环境与工具

教师应当充分利用日常生活环境中与数学有关的信息,开发成为教学资源。教师应当努力开发制作简便实用的教具和学具,有条件的学校可以建立“数学实验室”供学生使用,以拓宽他们的学习领域,培养他们的实践能力,发展其个性品质与创新精神,促进不同的学生在数学上得到不同的发展。

5. 生成性资源

生成性资源是在教学过程中动态生成的,如,师生交互、生生交流过程中产生的新情境、新问题、新思路、新方法、新结果等。合理地利用生成性资源有利于提高教学有效性。

[1] 延迟评价是指在平时学习过程中,对尚未达到目标要求的学生,可暂时不给明确的评价结果,给学生更多的机会,当取得较好的成绩时再给予评价,以保护学生学习的积极性。

相关阅读
随机推荐